Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

By Doug Black

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough*. Within 10 to 12 years, we’re told, special-purpose quantum systems (see related story: Hyperion on the Emergence of the Quantum Computing Ecosystem) will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power.

Here’s the quantum computing dichotomy: even as quantum evolves toward commercial availability, very few of us in the technology industry have the slightest idea what it is. But it turns out there’s a perfectly good reason for this. As you’ll see, quantum (referred to as the “science of the very small”) is based on a non-human, non-Newtonian stratum of earthly existence, which means it does things, and acts in accordance with certain laws, for which we humans have no frame of reference.

Realizing why quantum is so alien can be liberating. It frees us from the gnawing worry that we’re not smart enough to ever understand it. It also means we can stop trying to fake it when quantum comes up in conversation. Speaking as a confirmed “Newtonian caveman” (see below), this writer asserts that at least the thinnest, outermost layer of quantum may not be as incomprehensible as we suppose. It might be a good idea if all of us were to make a late New Year’s Resolution to take a fresh stab at grasping quantum’s basic principles.

To help in this process, below are remarks delivered this week at the Rice University Oil & Gas HPC Conference in Houston by Kevin Kissell, technical director in Google’s Office of the CTO. In an interview last year, Kissell told us that while he works with Google’s quantum computing R&D group, he is by background a systems architect; his role with the quantum group is to advise his colleagues on assembling the technology into usable form.

“I’m not really a quantum guy,” he told us at SC17, “though I do read quantum physics textbooks in my spare time.”

Oh, ok.

If you’ve never been to a Kevin Kissell presentation at an industry conference, make a point of it at your next opportunity. It’s appointment viewing. The profusion of technical and scientific knowledge that pours forth, colored by humor, energy and intelligence, is something to see. A tech enthusiast, Kissell gives you the sense that he can’t get his thoughts and words out fast enough. He put on such a performance at the Houston conference, taking on the Herculean task of explaining quantum computing to the rest of us. To Kissell’s great credit, he did it with the empathy of a natural teacher who understands where comprehension stops and mystification begins.

Below is an excerpt of his remarks:

Google has been working on quantum computing for a while, and it’s really hard to explain to people sometimes. And it’s my belief that this is because our brains are not wired for it. There’s an evolutionary advantage in having a brain that understands Newtonian mechanics. Which is to say that when I throw a rock, it’s going to follow a parabola. Now it took us 10,000-20,000 years to be able to define a parabola mathematically. But the intuition that it’s going to start dropping – and dropping at an accelerated rate, because that’s what gravity does – that’s pretty instinctive because that’s a survival thing. But with quantum mechanics, there’s no reason why our brain needs to wrap itself around quantum mechanics in the same way, and in part this is because it contradicts intuition.

One of the classic examples that I found quite helpful in understanding this stuff is the classic demo that you can do it with a laser; the classic model is having a controlled source of individual photons, you fire photons in a beam splitter, you have a couple of mirrors, you have another beam splitter and you have a couple of detectors.

Kevin Kissell this week at the Rice University Oil & Gas HPC Conference

Now my Newtonian caveman brain tells me what should be happening is that a statistically equal number of photons should be hitting on either detector. But that’s not what happens. Because photons ain’t Newtonian things, they’re quantum things. And if you accept this just on faith – because I couldn’t derive this personally – that a beam splitter can be modeled as that matrix (see image) and that the path on which the photon is traveling can be thought of as a vector of a couple of probabilities, then I multiply that probability vector by the beam splitter, that gives me a couple of other resulting matrices, and then I run those matrices into the second beam splitter. The result I get is that the probability of it going into the upper target is zero and the probability that it goes to the target on the right becomes one. That seems strange, and the math only works if it is mathematically, at least, possible that the photon is on both paths at the same time.

This hurts our brains, but this seems to be the way the universe works at a microscopic level.

And so taking this…, if I think of my element of data as a quantum bit – or a qubit – it’s not something that I can represent as an on/off thing. In fact the usual graphical representation is a point on a sphere. So you can represent that point on a sphere as an X-Y-Z coordinates, or I can represent it as a pair of angles relative to the baseis. Typically, it’s done with angles. It hurts my eyes to read it, but that’s the way it’s done.

What’s cute about this is that with a normal bit, it’s 0 or 1…. (But) the quantum bit actually just has that photon which is on both paths at the same time. So this qubit is in a certain sense both 0 and 1 at the same time. It’s got a couple of values that are superimposed on it.

That’s kind of cool, but what is cooler is that if I’ve got two qubits then the vector spaces just sort of blossom. If I have two bits, I can express a value and I have four options that I can express. But if I have two qubits I can express four values at the same time. And that’s the power of it. It’s just exponentially more expressive, if you can actually master it.

So if I have 50 qubits, that state space is actually up there with a very large (Department of Energy) machine. I don’t know if it’s up there with an exascale machine, but it’s getting way up there. If I have 300 qubits, in principle I can represent and manipulate more states than there are atoms in the universe.

And, very conveniently, if I have 333 qubits I can represent a Google for it. (audience laughs) I’m not saying that that’s our design goal, but I’ll be very surprised if we don’t do at least a few runs with a 333-qubit machine… (more laughs)…

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire