Early photos-FOMO —

How alternative Egyptology and scientific archaeology were born on the Giza Plateau

The analog world still has plenty of wonders in this excerpt from The Analog Antiquarian.

In the nineteenth century, a rift opened in the study of Egyptology. Early on, men like Giovanni Caviglia and Howard Vyse, full of metaphysical notions about Egyptian civilization that were drawn from the Bible and various mystical texts, could still have their work taken seriously by the international community of scholars. Later in the century, though, as men like Samuel Birch, Karl Richard Lepsius, and Auguste Mariette moved toward a more empirical understanding of ancient Egypt, that became less and less the case.

Thus began a conflict that remains with us to this day, between the “mainstream” or “respectable” branches of Egyptology and what a steadfastly neutral observer might refer to as “alternative Egyptology”; respectable Egyptologists, for their part, tend to prefer terms like “the pyramidiots.” Here's how the battle began.

The publisher

The founding text of this alternative Egyptology was published the very same year as On the Origin of Species. It was called The Great Pyramid: Why Was It Built and Who Built It? by John Taylor. Even in 1859, most sober-minded Egyptologists thought they had already done a pretty good job of answering those questions. But Taylor, needless to say, begged to differ.

Whatever else one can say about him, Taylor was no idiot. Already 78 years old at the time he finished his book about the Pyramid of Khufu, he had been a prominent editor and publisher on the London literary scene for decades by that point. He’s still remembered by historians of literature today for having advised, encouraged, and published the poets Samuel Taylor Coleridge, John Keats, and John Clare. When not shepherding the works of these others to publication, Taylor also wrote prolifically in his own hand on a bewildering variety of topics. Late in his life, religion and politics began to fill the lion’s share of his output, his fundamentalist views on the former fueling his ever more reactionary views on the latter.

He focused much of his attention on an oddly specific subject, one that may sound more innocuous than divisively political to modern ears: systems of measurement. Yet the subject was in fact inextricably bound up with the politics of the time, at least in the minds of reactionary thinkers like Taylor. He was violently opposed to the new metric system, which had been adopted as the standard in France at the end of the last century as a gift of the in-with-the-new sentiment of that country’s revolution. It was then spread across Europe by Napoleon’s armies. By the mid-1800s, a debate was raging in Britain as well over whether the country should join much of the European continent in embracing the new standard. A staunch traditionalist by education and inclination, Taylor knew exactly where he stood. He claimed that the old, so-called “imperial” standard was not only “more perfect” than the alternative—a highly dubious claim at best—but that it was actually favored by God. He found his justification in the Old Testament, mixed liberally with the doctrine of British Exceptionalism that has always haunted that nation’s relations with mainland Europe.

Our Motto, from Deuteronomy, points to a very important consideration: vis.—That the people who maintain a perfect and just weight, and a perfect and just measure, may expect lengthened days in the land which God giveth them. If any people were entitled to so great a favour, it might be the Inhabitants of this Country. They have had the same measures of Length, Capacity, and Weight, from the earliest times; and they have been blessed with a long and unbroken series of peaceful Governments. Greater freedom from external foes, and from internal dissensions, has not fallen to the lot of any other nation.

Yet Taylor couldn’t hope to make his argument by pointing to the peace and prosperity of Britain alone—especially not when such potent counter-examples as the English Civil War lurked in the country’s past. He craved more concrete proofs for his assertion that the imperial system was literally divine. And he found them in the Pyramid of Khufu, then as now one of the most ancient substantially intact human-made structures in the world, vastly more magnificent in size and grandeur than any of the few structures that had come before it.

Taylor wasn’t, of course, the first person to want to read deeper meanings into the measurements and proportions of the Pyramids of Giza. In 1838, an obscure British author named H. Agnew first proposed the other theory that would become the foundation of Taylor’s work. He claimed that, although “the chief objects of these buildings [is] to serve for sepulchral monuments, the Egyptians sought, in the appropriate figure of the Pyramid, to perpetuate, at the same time, a portion of their geometrical science.” The height of the Pyramid of Menkaure, he said, was equal to the radius of a circle whose circumference was equal to the perimeter of the pyramid’s base.

The correspondence Agnew claimed to have detected, if it proved to be absolute, would imply that the ancient Egyptians had in fact solved the most famous unsolved problem in geometry, that of squaring the circle—i.e., calculating the necessary dimensions of a square that has the exact same area as a given circle. What seems like it ought to be straightforward enough on the face of it is actually made impossible by the irrational number known as pi, a fact that was definitively proved only in 1882. Even in 1838, however, Agnew was willing to acknowledge that squaring the circle exactly was “probably” a mathematical impossibility. Nevertheless, he wrote, the Egyptians had managed “the greatest practical approximation to exactness” and used it in the construction of the Pyramid of Menkaure, which he regarded as having the greatest “perfection of form” of all the pyramids despite its relatively small size in comparison to the Pyramids of Khufu and Khafre.

Two decades later, John Taylor borrowed Agnew’s innovation without attribution and moved it from the Pyramid of Menkaure to the Pyramid of Khufu, apparently on the assumption that the pyramid used to codify a divine system of measurement must necessarily be the biggest and grandest of them all. (As for “perfection of form,” that has always been in the eye of the beholder on the Giza Plateau.)

Taylor then made a rather astonishing leap of logic: the architects of the pyramid, he claimed, knew that the earth is a sphere, and even that it orbits around the sun rather than vice versa—a theory that had come to be accepted in Europe only in the last few centuries. Further, the architects had deduced the circumference of the earth by “observing the motion of the heavenly bodies over the earth’s surface.”

“They assumed the earth to be a perfect sphere,” Taylor wrote, “and as they knew that the radius of a circle must bear a certain proportion to its circumference, they then built a Pyramid of such a height in proportion to its base, that its perpendicular would be equal to the radius of a circle equal in circumference to the perimeter of the base.”

The Pyramid of Khufu thus preserved for posterity, by an incredibly convoluted means, a record of the circumference of the earth, which figure could be determined by multiplying the length of one of its base’s sides by 120 million. (How posterity was supposed to know what factor to use in making this calculation went unexplained.)

But there was more: the Pyramid of Khufu also encoded within its dimensions the value of pi, the sacred number its architects had needed to use to arrive at said dimensions in the first place. According at least to the measurements Taylor preferred to employ, the length of a side of the pyramid’s base was evenly divisible by a “sacred cubit” handed down directly from God; this was an old alchemical concept Taylor had borrowed from Isaac Newton. In Newton and Taylor’s world, a sacred cubit consisted of exactly 25 ancient inches, each of which was 1.001 imperial inches. (The modern world was, after all, an imperfect and fallen place even for a godly people like the Britons.) The fact that the pyramid could be measured in ancient inches or sacred cubits without recourse to fractions validated the measurement in Taylor’s mind.

And there was still more. The circumference of the earth by Taylor’s best reckoning was equal to precisely 1,570,896,000 ancient inches—again, no fractions required. His “logic” from here became so bizarre that I can’t hope to explain it. I can only quote it:

If this last measure is doubled, the figures amount to 3,141,792,000. Now it is well known, that the proportion which the diameter of a circle bears to its circumference, is expressed by the figures 1 to 3.1415972 [i.e., pi]; but these figures differ from those last mentioned only by the substitution of 5 for 7 in the fifth place. What is the reason for this remarkable agreement? Is it accidental? Or does it imply design?

The thunderingly obvious answer is that of course it’s accidental—or, rather, the product of a mind determined to come up with a desired correspondence by hook or by crook. Taylor was helped enormously in these endeavors by the sheer inexactness of all measurements of the pyramids to date. Complications such as the enormous quantities of sand and rubble obscuring the true base of each of the pyramids, along with doubts about the thickness of the smooth casings that had once covered them, had made all proposed measurements of the pyramids, especially in their original forms with casings intact, into mere approximations at best. Thus Taylor had a wide range of numbers to choose from; when any given number didn’t fit his theories, it was easy enough to find another that worked better. If he did this often enough, and fed these ideal numbers through enough convoluted calculations like the ones just described, he could always arrive at his desired result of “incontrovertible” proof that the imperial system was divinely inspired. The very ease with which he was able to shift Agnew’s original theory from the Pyramid of Menkaure to the Pyramid of Khufu, just by massaging the numbers a bit, demonstrates the process in action.

All that remained was to anchor the actual event of the Pyramid of Khufu’s construction to the divine word of God. This didn’t strike Taylor as such a leap. Even the most sober-minded Egyptologists agreed that the pyramids were aligned to the cardinal points of the compass with a precision that would be difficult to better even in modern times. How could a people as primitive as the ancient Egyptians have accomplished such a feat if they hadn’t had divine help? Taylor reached back to a vague anecdote from Manetho, the ancient Egyptian scholar of the post-pharaonic period who had originated the standard system of numbered dynasties. He had told of a group of “strangers” who had once entered Egypt and somehow conquered it without a battle.

These people, Taylor now decided, must have been a tribe of God’s chosen who had visited the country in the time between the eras of Noah and Abraham. The pharaoh Khufu had always had a terrible reputation in Egyptian history; witness the tales of cruelty and oppression which the Egyptians had told of him to Herodotus in circa 440 BC. This reputation must be down to the fact that the chosen strangers had convinced Khufu as well to worship the one true God, causing his “idolatrous” subjects to resent him forever. What people insisted on calling the Pyramid of Khufu wasn’t conceived by the Egyptians themselves to honor their pharaoh in death, but by a since-forgotten Biblical patriarch as a means of preserving a “Divine Revelation” made to him during the time before “the Art of Writing was communicated to mankind” through Moses.

Amidst much else, this claim ignored a growing body of evidence that the people who had built the Pyramid of Khufu did in fact have a system of writing—evidence which included the graffiti found by Vyse inside the pyramid itself, in a space where no one else appeared ever to have ventured since the original builders had sealed it up. No matter; an illiterate Egyptian civilization at the time of the pyramid’s construction suited Taylor’s agenda and thus must be the case.

Most of the sober thinkers of Taylor’s day were highly skeptical of his arguments for all of the reasons just given. He tried to present his ideas before the Royal Society of London, only to be roundly rejected. The Athenaeum, one of the preeminent magazines of the British intelligentsia, likewise remained unconvinced in its review of his book: “He wants basis for his superstructure.” One critic pointed out cogently that “the broken surface of the Pyramid leaves us in doubt of what the angle really is, and what the measures of the base and height originally were—a doubt which makes it in vain to discuss any question which would be disturbed by a blunder of one in a hundred.” Even those willing to consider the possibility that the proportions of the Pyramid of Khufu revealed a surprisingly deep understanding of geometry on the part of the builders blanched at Taylor’s theories about it encoding a commandment from God handed down before the time of Moses.

Channel Ars Technica